Spectral studies of Nd3+ doped different fluorophosphate glasses for their aptness in laser applications at 1060 nm

Author:

Narayana Devara B. Surya, ,Ratnakaram Y.C.,Kumar M.

Abstract

Neodymium doped fluorophosphate (FP:Nd3+) glasses with different chemical compositions (59NH4H2PO4+15ZnO +15BaF2+10X+1·0NdF3 (X=LiF, NaF, CaF2, SrF2, AlF3)) were prepared by melt quenching. Their structures and spectroscopic properties were studied using x-ray diffraction, FTIR, FT-Raman and 31P, 27Al MAS NMR techniques. Various structural groups were identified using FTIR and FT-Raman spectra. The depolymerisation of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups revealed by 31P MAS NMR spectroscopic studies. Optical properties were studied using absorption and photoluminescence spectroscopy. Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) were estimated from absorption spectra. Radiative parameters such as transition probabilities (A), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated. Two emission lines at 1060 and 1330 nm were observed for Nd3+ in all the fluorophosphate glasses. From the emission spectra, emission characteristics were studied via optical band gains (σe×τR) and gain bandwidths (σe×Δλeff). Fairly large numerical values for peak emission cross-sections (σe) and branching ratios (β) for 4F3/2Æ4I11/2 transition of Nd3+ ion doped calcium fluorophosphate glass were observed. These results are rosy for NIR laser application at 1060 nm.

Publisher

Society of Glass Technology

Subject

Materials Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3