Abstract
Antiferroelectric materials are promising for applications in advanced high-power electric and electronic devices. Among them, AgNbO3-based ceramics have gained considerable attention due to their excellent energy storage performance. Herein, multiscale synergistic modulation is proposed to improve the energy storage performance of AgNbO3-based materials, whereby the tape casting process is employed to improve the breakdown strength and Gd/Mn doping is utilized to enhance the antiferroelectric stability. As a result, a high recoverable energy storage density up to 5.3 J cm-3 and energy efficiency of 67.6% are obtained in Gd/Mn co-doped AgNbO3 ceramic, which shows good temperature stability and frequency stability. These results show that the components and processes proposed in this work provide a feasible method for improving the energy storage performance of AgNbO3-based ceramics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献