Iridium-decorated carbon nanotubes as cathode catalysts for Li-CO2 batteries with a highly efficient direct Li2CO3 formation/decomposition capability

Author:

Dang Feng,Zhang Xiao

Abstract

Rechargeable Li-CO2 batteries are regarded as the ideal application for the superior energy storage technology. However, they still limited by the lack of high efficiency electrocatalyst and limited understanding for the electrochemical reaction mechanism. In this work, we prepared the Ir-CNT composite by a rotation hydrothermal method, which remarkably promoted the reaction kinetics and enhanced the electrocatalytic performance of Li-CO2 batteries. The incorporation of Ir nanoparticles shows high activity enhancement for the adsorption of Li2CO3 species, which was confirmed by density functional theory (DFT) calculations. The Ir-CNT cathode exhibited an excellent ability to catalyze the formation and decomposition of Li2CO3 during cycling. Therefore, a large specific capacity of 10325.9 mAh g -1 and an excellent high rate cyclability with stably over 100 cycles were achieved. The three-dimensional Ir-CNT cathode could spontaneously advance the electrocatalytic activity of CO2 oxidation and precipitation to increase specific capacities and cycle life, significantly boosting the practical application of Li-CO2 batteries.

Publisher

Lab Academic Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3