Abstract
The present study presents various acrylate resin systems formulated with dipropylene glycol diacrylate (DPGDA) reactive diluent such as silicon acrylate (SiA), urethane acrylate (UA), and polyester acrylate (PEA) and their nanocomposites prepared by filling hydrophilic and amorphous fumed silica particles (FS) in different proportions produced by DLP (Digital Light Processing) and LCD (Liquid Crystal Display) (DLP/LCD) type 3D printers. The increase in the fumed silica content resulted in an increase in the ultimate tensile strength, the Young's modulus, the Izod impact strength, and the hardness values up to a certain value for each acrylate resin system. The PEA-DPGDA-2%FS nanocomposite showed an increase of 20.6% and 47.2% in the ultimate tensile strength and the Izod impact strength, respectively. A substantial increase in Izod impact strength of 61.7% was achieved with UA-DPGDA-1%FS. PEA-DPGDA and UA-DPGDA showed much higher mechanical properties than SiA-DPGDA. However, tensile strength, Young's modulus, and Izod impact strength of fumed silica-filled SiA-DPGDA samples showed substantial increases of 90%, 74.4%, and 60.8%, respectively.
Publisher
Journal of Innovative Engineering and Natural Science