On the transport and speciation of ruthenium in high temperature oxidising conditions

Author:

Backman Ulrika,Lipponen Maija,Auvinen Ari,Tapper Unto,Zilliacus Riitta,Jokiniemi Jorma K.

Abstract

Summary In this paper, the transport and speciation of ruthenium under conditions simulating an air ingress accident was studied. Ruthenium dioxide was exposed to an oxidising environment at high temperatures (>1200 °C) in a tubular flow furnace. At these conditions, volatile ruthenium species were formed. A major part of the released ruthenium was deposited in the tube as RuO2. Depending on the experimental conditions, 12–35 wt. % of the released ruthenium was trapped in the outlet filter as RuO2 particles. At completely dry conditions using stainless steel tubes, only 0.1–0.2 wt. % of the released ruthenium reached the trapping bottle as gaseous RuO4. However, when alumina was applied as tube material or the atmosphere contained some water vapour and silver seed particles, the fraction of gaseous ruthenium reaching the trapping bottle increased to 5 wt. % which is close to thermodynamic equilibrium. This indicates that RuO2 does not catalyse the decomposition of RuO4.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3