Mechanism of pressure-induced amorphization

Author:

Yamanaka T.,Nagai T.,Tsuchiya T.

Abstract

Abstract Several crystalline substances have been found to be transformed into the amorphous state under compressed condition at kinetically low temperature. Dynamical lattice-instability due to elastic deformation by shear and stress induces the reversible amorphization, some of which produces memory glass. On the other hand the irreversible modes are attributed to the plastic deformation by the nucleation of high-pressure form in the parent lattice but thermal energy is not kinetically high enough to provide the large crystallite size coherent to the X-ray radiation. They can be defined as X-ray amorphous. These reversible and irreversible transformations arise from the hindrance to sufficient atomic mobility. These pressure-induced amorphizations are the precursor phenomena of the phase transformation to high-pressure polymorphs. Successive structure changes of the pressure-induced amorphization are investigated under various pressure and temperature by X-ray diffractometry, EXAFS and Raman spectroscopy. The amorphization has been also simulated by the molecular dynamics.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3