PCA-kernel estimation

Author:

Biau Gérard,Mas André1

Affiliation:

1. Institut de Math´ematiques et de Modelisation de Montpellier, Equipe de Probabilites et Statistique, Montpellier Cedex 5, Frankreich

Abstract

Abstract Many statistical estimation techniques for high-dimensional or functional data are based on a preliminary dimension reduction step, which consists in projecting the sample X 1,...,X n onto the first D eigenvectors of the Principal Component Analysis (PCA) associated with the empirical projector ^ Π D . Classical nonparametric inference methods such as kernel density estimation or kernel regression analysis are then performed in the (usually small) D-dimensional space. However, the mathematical analysis of this data-driven dimension reduction scheme raises technical problems, due to the fact that the random variables of the projected sample (^Π D X 1,...,^Π D X n ) are no more independent. As a reference for further studies, we offer in this paper several results showing the asymptotic equivalencies between important kernel-related quantities based on the empirical projector and its theoretical counterpart. As an illustration, we provide an in-depth analysis of the nonparametric kernel regression case.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical analysis of Mapper for stochastic and multivariate filters;Journal of Applied and Computational Topology;2022-03-29

2. The correction term in a small-ball probability factorization for random curves;Journal of Multivariate Analysis;2021-11

3. Nonparametric modelling for functional data: selected survey and tracks for future;Statistics;2018-07-04

4. Robust PCA and pairs of projections in a Hilbert space;Electronic Journal of Statistics;2017-01-01

5. High-Dimensional Principal Projections;Complex Analysis and Operator Theory;2014-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3