Temperature effects on the interaction mechanisms between U(VI) and Eu(III) and ZrP2O7: experiment and modelling

Author:

Finck N.,Drot R.,Lagarde G.,Mercier-Bion Florence,Catalette H.,Simoni E.

Abstract

In the field of nuclear waste management, prediction of the radionuclides migration through the geosphere has to take into account the effects of temperature. The chosen substrate, zirconium diphosphate, was previously described concerning its surface acidity properties for several temperatures (25 °C, 50 °C, 75 °C, 90 °C). Edges for uranyl sorption were obtained in NaClO4medium, and the europium(III) sorption edges were realized in KNO3medium to evaluate the influence of the complexing nitrate ions. Influence of the temperature, the nature of the cation and the nature of the substrate were pointed out by comparing the edges for the different systems. A structural investigation (TRLFS) was carried out to define experimentally, at the microscopic level, the sorption equilibria. Only UO22+and Eu3+were sorbed on both ZrP2O7surface sites (≡Zr–O and ≡P–O), the nitrate medium having no influence on the sorbed species. Furthermore, temperature did not change the sorption mechanisms. The surface complexation modelling of both investigated systems was realized using i) the constant capacitance model ii) the results of the substrate characterizations iii) uranyl sorbed complex determinations. The formation of bidentate surface complexes onto the ≡Zr–O site is not accompanied by a proton release, whereas the formation of bidentate surface complexes onto the ≡P–O site is followed by a release of 2 protons, for both cations and at all temperatures studied. The determined sorption constants increase with temperature, as was expected from the analysis of the sorption edge positions.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3