Abstract
An attempt is made to formulate the requirements for the accuracy in the delivery of absorbed dose to a patient during radiation therapy. These requirements are mainly based on the relative steepness and separation of the dose-effect curves for local tumour control and normal tissue damage. The curves for normal tissue complications in general may be steeper than those for local tumour control. From these data, a standard requirement of 3.5% is proposed for the combined uncertainty of type A (random) and type B (systematic), given as one relative standard deviation in the absorbed dose delivery. However, it is recognized that, in many cases, larger uncertainties are acceptable palliative treatments). This value of 3.5% applies to the absorbed dose at the specification point for curative treatments. As far as the dose accuracy requirements at other points in the planning target volume are concerned, a value of 5% (one standard deviation) seems more appropriate. This required accuracy in the delivery of the absorbed dose cannot always be completely achieved in photon therapy even for simple treatment conditions. All the clinical data which were reviewed, including some results from the ldquo;Patterns of Care Study”, indicate a close correlation between the outcomes of therapy (control rates, complications) and dose level, inaccuracy or errors in dosimetry and patient-machine positioning. This has been reported for external beam therapy as well as for brachytherapy. Only the clinical results will allow us to select the optimal treatment conditions (e.g. selection and definition of the planning target volumes, dose levels and beam arrangement), but they could be interpreted correctly only to the extent that the treatment execution would be correct. This result strongly endorses the Quality Assurance Programmes, in which the clinicians and physicists should be fully involved. Lastly, the outcome of a treatment can only be interpreted meaningfully if the parameters of the irradiation, in particular, the distribution of dose in space and time can be accurately correlated with the type and extent of the disease. It is essential that clear, well defined and unambiguous concepts and parameters be used for reporting purposes to ensure a common language between collaborating centres. This is one of the major tasks that the ICRU undertook several years ago.
Subject
Physical and Theoretical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献