177Lu-DOTMP: A viable agent for palliative radiotherapy of painful bone metastasis

Author:

Das Tapas,Chakraborty Sudipta,Sarma Haladhar D.,Banerjee Sharmila

Abstract

The suitable nuclear decay characteristics [T 1/2=6.73 d, E β (max)=497 keV, E γ=113 keV (6.4%), 208 keV (11%)] as well as the feasibility of large-scale production with adequate specific activity and radionuclidic purity using a moderate flux reactor are important attributes towards 177Lu to be considered as a promising radionuclide for palliative care in painful bone metastasis. The present study describes the preparation of 177Lu complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid (DOTMP) and its preliminary biological evaluation in animal models with an aim to proposing it as a viable radiopharmaceutical for bone pain palliation. The choice DOTMP as the polyaminophosphonic acid carrier ligand is based on the enhanced thermodynamic stability and kinetic inertness of the metal-ligand complexes with macrocyclic chelators. 177Lu was produced with a specific activity of ∼12 GBq/mg (∼324 mCi/mg) and radionuclidic purity of 99.98% by irradiation of natural Lu2O3 target at a thermal neutron flux of ∼6×1013 n/cm2s for 21 d. 177Lu-DOTMP complex was prepared in high yield and excellent radiochemical purity (>99%) using DOTMP synthesized and characterized in-house. The complex exhibited excellent in-vitro stability at room temperature. Biodistribution studies in Wistar rats showed rapid skeletal accumulation of the injected activity [(1.60±0.19) per gram in femur at 3 h post-injection] with fast clearance from blood and minimal uptake in any of the major organs. Scintigraphic studies carried out in normal Wistar rats and New Zealand white rabbits also demonstrated significant accumulation of the agent in skeleton and almost no retention in any other vital organs.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3