Affiliation:
1. Radioanalytical Chemistry Section, Radiochemistry & Isotope Group, Bhabha Atomic Rese, Mumbai-400085, Indien
2. Bhabha Atomic Research Centre, Trombay, Radioanalytical Chemistry Section, Radiochemistry, Mumbai, Indien
Abstract
Abstract
In the supercritical fluid extraction of uranium from acidic medium employing TBP as co-solvent, effects of various parameters on extraction efficiency were studied. Variation in pressure (80–300 atm), temperature (308–353 K), CO2 flow rate (0.5–3 mL/min), co-solvent percentage (1–10%), molarity of nitric acid (0.5–10 M) were found to influence uranium extraction efficiency. The uranium extraction efficiency depends on distribution ratio and kinetics of transport of U-TBP complex into supercritical CO2. In the 150–300 atm pressure range, variation in extraction efficiency was similar to that of uranium distribution ratio under equilibrium conditions. Whereas below 150 atm, it closely followed supercritical CO2 density variation which could be attributed to non-equilibrium behavior that eventually attained equilibrium. In the non-equilibrium region, increased supercritical CO2 density with pressure favored enhancement in solubility as well as extraction kinetics of the U-TBP complex. Increase in temperature generally resulted in enhanced volatility of U-TBP complex and a decrease in supercritical CO2 density which in turn affected the extraction efficiency. Up to 333 K temperature, extraction efficiency gradually increased due to enhancement in volatility of U-TBP complex which more than compensates for decrease in the supercritical CO2 density. Beyond this temperature, the steep fall in the extraction efficiency is attributed to combined effect of saturation in volatility of the U-TBP complex and significant decrease in the density of supercritical CO2 approaching the critical value at which supercritical CO2 tends to form large clusters thereby resulting in steep decrease in its solvating power. Extraction efficiency was found to increase with nitric acid molarity up to 7 M and afterwards showed small decrease possibly due to competitive co-extraction of HNO3. Up to CO2 flow rate of 1 mL/min increase in extraction efficiency was observed which attained saturation afterwards. Linear increase in extraction efficiency was observed with the amount of TBP. Extraction efficiency was found to increase linearly with logarithm of extraction time. Under optimised conditions (150 atm, 333 K, 1 mL/min CO2 flowrate, 10% co-solvent, 7 M nitric acid and 30 min dynamic extraction time) extraction efficiency was found to be (98±2) was observed. 30 min dynamic extraction mode was found equivalent to 40 min static mode. Online complexation mode was more efficient than in situ mode.
Subject
Physical and Theoretical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献