Pertechnetate immobilization with amorphous iron sulfide

Author:

Liu Yongjian1,Terry Jeff2,Jurisson Silvia S.

Affiliation:

1. University of Missouri-Columbia, Department of Chemistry, Columbia, U.S.A.

2. Illinois Institute of Technology, Department of Biological, Chemical, and Physical S, Chicago, U.S.A.

Abstract

AbstractThe reduction of pertechnetate (TcO4) with freshly prepared amorphous iron sulfide was investigated. The amorphous iron sulfide (FeS) was shown to have an elemental composition of FeS0.97for all of the size fractions and a point of zero charge of pHpzc=7.4. Solubility studies of FeS in various buffers indicated that in the pH range 6.1–9.0, the concentrations of dissociated Fe2+and S2−were negligible. The reductive immobilization of TcO4with FeS was shown to be accelerated by increasing ionic strength and strongly pH dependent. At pH values below the pHpzc, the positively charged FeS surface reacted much faster with TcO4and had higher immobilization yields relative to the negatively charged FeS surface at pH values above pHpzc. The TcO4−FeS reaction is consistent with a surface mediated reaction through ligand exchange. The TcO4−FeS reductive immobilization reaction product was characterized by X-ray absorption near edge spectroscopy (XANES), extended X-ray absorption fine structure (EXAFS), Fourier transform infrared spectroscopy (FT-IR), and energy dispersive X-ray spectroscopy (EDS) and found to be predominantly TcO2. Studies on the reductive capacity of the FeS and the long term stability of the TcO4−FeS reaction product under both anaerobic and aerobic environments shows the potential utility of thein situgaseous (hydrogen sulfide gas) immobilization technology in solidification of TcO4by creating a FeS permeable reaction barrier in the vadose zone.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3