Actinide partitioning to an acidic, sandy lake sediment

Author:

Loyland S.M.,LaMont S.P.,Herbison S.E.,Clark Sue B.

Abstract

Knowledge of the partitioning of actinides to sediments in natural systems is essential for modeling their environmental fate. Using two different sequential extraction methods, we have studied the partitioning of U and Pu to an acidic, sandy lake sediment that was contaminated due to nuclear production activities. We find that both methods yield similar partitioning information, and that much of the U is associated with insoluble phases, whereas the majority of the Pu is extracted with oxidizable phases, defined to be predominantly organic matter. Our study suggests that U in this ecosystem is of natural origin. Although Pu and Fe in this system are known to cycle from the sediments to the water column during periods of anoxia, only a low percentage of Pu is extracted from the phases that are reducible, which are operationally defined as amorphous Fe oxides. Although this sediment is low in organic matter, our results suggest that natural organics dominate the partitioning of Pu in this system.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3