In-target chemistry during the production of15O and11C using3He reactions

Author:

Krohn K.A.,Link J.M.,Weitkamp W.G.

Abstract

The use of nuclear reactions that do not involve a change in element can be advantageous for radionuclide production because enriched targets are rarely required and the yield of the nuclear reactions is usually adequate. However there is a disadvantage to these reactions for medical imaging because the product radioactivity is of low specific activity. In this report we discuss the application of radiation chemistry and nucleogenic recoil chemistry to two reactions,16O(3He,4He)15O and12C(3He,4He)11C, to improve specific activity of the radioactive oxygen and carbon recovered from the target. For both reactions, specific activities were improved, with minimal decrease in recovered radioactivity. For the16O→15O reaction in water, results demonstrated that the production of [15O]-O2followed a different reaction mechanism from that for unlabeled O2. The unlabeled yield was quantitatively predicted from classical radiation chemistry G-values for water. The radiochemical product distribution was a consequence of the combined effects of recoil chemistry and radiation chemistry. Studies with thin graphite foils demonstrated that we could irradiate sufficiently thin C foils so that a useful fraction of the recoil nucleogenic11C atoms escaped the irradiated carbon and reacted with circulating gas to capture an appreciable fraction of the product11C with an improvement in specific activity. Although we have shown the feasibility of producing GBq quantities of radiopharmaceuticals by recoil techniques, the advantages of even higher specific activity using enriched targets outweigh the cost of using enriched targets.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot atom chemistry and radiopharmaceuticals;AIP Conference Proceedings;2012

2. Production of an accelerated oxygen-14 beam;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2003-05

3. A target system for the production of 15O beams for ISAC;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2002-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3