Electrochemical separation and purification of yttrium-86

Author:

Reischl G.,Rösch Frank,Machulla H.-J.

Abstract

Summary For quantitative determination of in vivo dosimetry of 90Y-labeled radiotherapeuticals by means of PET, the positron emitting analogue yttrium-86 was produced at a low energy (“medical”) cyclotron via the known 86Sr(p, n)86Y reaction. Using 200 mg of 86SrCO3 (enrichment 95.6%) and protons of 15.1 MeV energy, average yields of 86Y of 48 ± 8 MBq/µA h were produced. After dissolution of 86SrCO3 in 3 ml of 0.6 N HNO3, 86Y was deposited in a simple and highly efficient electrochemical two-step procedure onto a platinum cathode at 450 mA (= 20 mA/cm2). The isotope was finally removed from the electrode by 100–300 µl of 0.5–1.0 N HCl or 0.3–0.6 N HNO3 resulting in an overall recovery of 88 ± 6% (corrected for decay). Up to 1 GBq of 86Y with high radionuclidic and radiochemical purity were obtained after a 2.5 h irradiation and a radiochemical separation time of 2 h. An ICP/AES analysis of the separated fraction showed a very small amount of strontium (< 0.1 ppm). The chemical purity of 86Y, essential for efficient labeling, was successfully demonstrated by means of complex formation with DOTA and a DOTA-conjugated peptide, exhibiting labeling yields higher than 98%.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3