Understanding the peak asymmetry in alpha liquid scintillation with β/γ discrimination

Author:

Aupiais Jean,Dacheux N.

Abstract

The peak evaluation in alpha liquid scintillation is known to be easy, mostly due to the gaussian shape of the peaks. However, we often observed a high-energy tail in addition to a pure gaussian function. This effect is only detectable with a high resolution α liquid scintillation spectrometer such as the PERALS® system. Indeed, its intrinsic resolution (180 keV for a 4 MeV α particle) is better than that obtained for conventional LSC spectrometers. The peak asymmetry was quantified using the Fisher´s coefficient γ1 (symmetry factor). We show that the main effect responsible for the asymmetry is internal conversion. Indeed, most of the even-even nuclides have low α intensity transitions leading to excited levels of their daughter nuclides. The internal conversion is almost equal to 100% and consequently produces a sum peak at higher energy. No generalization is possible for odd-even nuclides, but the knowledge of their disintegration scheme allows to explain the experimental values obtained and the differences observed (e.g. between 241Am and 243Am). The experimental determinations of γ1 are given for polonium, radon, radium, thorium, uranium, plutonium, americium, and curium isotopes. We show the necessity to take into account the L and M shell contributions for few nuclides like thorium isotopes to get a maximum accuracy in the activity measurements.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmental liquid scintillation analysis;Handbook of Radioactivity Analysis: Volume 2;2020

2. Liquid scintillation analysis: principles and practice;Handbook of Radioactivity Analysis;2020

3. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology;Journal of Environmental Radioactivity;2012-04

4. Liquid Scintillation Analysis;Handbook of Radioactivity Analysis;2012

5. Environmental Liquid Scintillation Analysis;Handbook of Radioactivity Analysis;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3