Stroboscopic neutron diffraction from spatially modulated systems

Author:

Eckold G.,Gibhardt H.,Caspary D.,Elter P.,Elisbihani K.

Abstract

Abstract The combination of stroboscopic techniques and neutron diffraction can be used to study the kinetics of structural changes in condensed matter on a microscopic level. Transient states may be identified and characterized on time-scales down to the microsecond regime. Hence, valuable information about the underlying mechanisms can be obtained from time-resolved experiments. Particularly interesting subjects for this type of investigation are spatially modulated systems which undergo phase transitions or phase separation. The potential of stroboscopic neutron diffraction is demonstrated using three different examples in which samples are periodically perturbed by the variation of temperature, mechanical stress or electric field and their structural response is characterized by time-resolved diffraction. Spinodal decomposition in ionic crystals of the silver-alkali halide type is shown to be dominated by two different processes on different time-scales. The stress-induced phase transition into the incommensurate phase of quartz involves relaxation processes which are reflected by different kinetic behaviours of Bragg peaks and satellite reflections, respectively. Finally, metastable transient states are observed during the field induced lock-in transition in ferroelectric Rb2ZnCl4 which are most probably due to strain fields and pinning effects.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3