Kinetic Size Effect During Dissolution of a Synthetic γ-Alumina

Author:

Roelofs Frank,Vogelsberger Wolfram1,Buntkowsky Gerd2

Affiliation:

1. Friedrich-Schiller Universität Jena, Institute of Physical Chemistry, Chemistry Earth S, Jena

2. FU-Berlin, Chemie, Berlin, Deutschland

Abstract

Abstract The dissolution process of a technical, nanodispersed γ-alumina in water was studied at 25 °C in the pH range 3.0 ≤ pH ≤ 11.5. Thereby, especial attention was paid to the influence of supersaturation on the dissolution behaviour observed. In conclusion, we were able to verify a size effect during the dissolution process, in the whole pH range investigated. In addition, we observed that changing supersaturation under identical conditions, leads to a shift of the maximum in the concentration profiles both, in absolute value and in time, when the maximum occurs. X-ray powder diffraction analysis and nitrogen adsorption measurements were used to identify the solid material collected during selected dissolution experiments. As a result, the formation of the aluminium phase -bayerite/gibbsite- could be excluded as a possible reason for the observed dissolution behaviour. The rate constants of the dissolution process were evaluated using the model of Gibbs free energy of cluster formation, which considers size effect among other factors. As a result, we were able to prove that the observed maxima in the concentration profiles were due to a kinetic size effect, caused by the size of the primary particles of the starting material, surface tension, and supersaturation in the system.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3