Magnetization of Rotating Ferrofluids: Predictions of Different Theoretical Models

Author:

Leschhorn A.,Lücke M.

Abstract

Summary We consider a ferrofluid cylinder, that is rotating with constant rotation frequency Ω = Ωe z as a rigid body. A homogeneous magnetic field H 0 = H 0 e x is applied perpendicular to the cylinder axis e z. This causes a nonequilibrium situation. Therein the magnetization M and the internal magnetic field H are constant in time and homogeneous within the ferrofluid. According to the Maxwell equations they are related to each other via H = H 0M/2. However, H and M are not parallel to each other and their directions differ from that of the applied field H 0. We have analyzed several different theoretical models that provide equations for the magnetization in such a situation. The magnetization M is determined for each model as a function of Ω and H 0 in a wide range of frequencies and fields. Comparisons are made of the different model results and the differences in particular of the predictions for the perpendicular components H y = −M y/2 of the fields are analyzed.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3