Experimental and Numerical Investigation of Fe(CO)5 Addition to a Laminar Premixed Hydrogen/Oxygen/Argon Flame

Author:

Staude S.,Hecht C.,Wlokas I.,Schulz C.,Atakan Burak

Abstract

Abstract Low-pressure, lean, laminar, premixed hydrogen/oxygen/argon flames seeded with iron pentacarbonyl (35−170 ppm Fe(CO)5) were modeled with detailed chemistry and the results were compared to laser-induced fluorescence imaging measurements of iron atom concentration and gas-phase temperature. The model includes recent rate coefficients for the decomposition of iron pentacarbonyl and thermodynamic data. The simulated iron concentrations correspond well with the measurements with only minor discrepancies in the rise of the iron profiles at low Fe(CO)5 concentrations. In addition, it was shown that the mechanism is able to predict the effect of Fe(CO)5 on the flame speed also for lean conditions, where the model was not established yet. The major iron species, aside from atomic iron, in this flame are predicted to be FeOH and Fe(OH)2 with some FeO2 early in the flame. The observed increased flame temperatures in the presence of Fe(CO)5 are attributed to catalytic hydrogen recombination.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3