Thermal Rate Constants for Polyatomic Reactions: First Principles Quantum Theory

Author:

Huarte-Larrañaga Fermín,Manthe Uwe

Abstract

The truly accurate knowledge of molecular dynamics phenomena is generally achieved through a combination of detailed experiments and first principle theory. The complexity of such a level of description had until recently restricted accurate studies to rather small systems. However, the sophistication of theoretical methods and massive technological developments have provided remarkable progress in the detailed knowledge of reactive events during the past three decades. Moreover, significant progress towards the detailed understanding of polyatomic reaction has been made in recent years. Detailed experimental and accurate theoretical studies of reactions involving more than only three or four atoms are becoming increasingly available. In this work, aspects of the theoretical work aiming at the accurate description of polyatomic reactions are reviewed. The present article focuses on the development of the first principle theory of reaction rates. It reviews theoretical developments and benchmark applications to reactions as CH4 + H → CH3 + H2 and CH4 + O → CH3 + OH. The importance of quantum effects for the thermal rate constants in different temperature regimes is discussed in detail. The accuracy of the classical transition state theory and of different approximate quantum theories is investigated in detail. A quantum transition state concept which facilitates accurate reaction rate calculations for polyatomic reaction is described. Benchmark results for the CH4 + H → CH3 + H2 reaction are shown which demonstrate that the accuracy of thermal rate constants calculated by first principle theory can rival the accuracy of available experimental data. The perspectives offered by these developments are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3