Influence of Boom Clay organic matter on the adsorption of Eu3+by illite – geochemical modelling using the component additivity approach

Author:

Bruggeman C.1,Liu D. J.1,Maes Norbert

Affiliation:

1. Belgian Nuclear Research Centre SCKCEN, Mol, Belgien

Abstract

AbstractThe solid–liquid distribution of europium (Eu) between an adsorptive surface and a solution phase containing a competitive colloid is the result of a delicate balance between several individual chemical reactions. In this study, adsorption isotherms of Eu in presence of dissolved Boom Clay natural organic matter were experimentally determined under conditions relevant for a geological repository (trace Eu concentrations, anoxic conditions, ∼0.014 mol l−1NaHCO3background electrolyte). It was found that both the concentration and size distribution (or operational cut-off used to discriminate between “mobile” and “immobile” colloids) of natural organic matter has a strong influence on the observed solid–liquid distribution.The experimental data were subsequently modelled using a component additive approach with two well-established sorption/interaction models: the 2 SPNE SC/CE model for describing Eu adsorption on illite, and Humic Ion-Binding Model VI for describing Eu complexation to natural organic matter. Model parameters were gathered from dedicated measurements in batch systems containing only Eu and the interacting phase under study, under similar conditions as in the ternary isotherm experiments. Mutual interactions between illite and natural organic matter were studied and quantified. Under the experimental conditions of this study, it was found that these interactions were only of minor importance.The two models were subsequently combined to blind predict the Eu solid–liquid distribution in the ternary batch experiments. Within an error margin of 0.5logߙKdunits, the additivity approach succeeded well in predicting Eu uptake in all experimental systems studied. A sensitivity analysis was performed to select the most important model parameters influencing the Eu uptake, and the robustness of the model. This study has shown that the component additivity approach for describing and predicting uptake of trivalent lanthanides/actinides under Boom Clay conditions, is promising, and may help in unraveling the complex behaviour of these radionuclides witnessed in migration experiments.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3