Interaction of PuO2thin films with water

Author:

Seibert Alice,Gouder T.1,Huber F.2

Affiliation:

1. European Commission, Institute for Transuranium Elements, Karlsruhe

2. European Commission, Institute for Transuranium, Karlsruhe

Abstract

AbstractThe surface adsorption and reaction of water with PuO2thin films was investigated by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS, respectively). Initial motivation of the work was to further investigate the potential role of water in promoting the surface oxidation of PuO2to Pu(IV)/Pu(V) mixed oxides formerly discussed in literature which may seriously impede the stability of spent nuclear fuel. Water may act as oxidant, as catalyst for the oxidation by O2, or as reactant leading to formation of hydrous oxide being oxidized by O2instead of PuO2(cr). In order to obtain high water coverage under the experimentally required ultra-high vacuum conditions, water was adsorbed at low temperature (77 K) as thick ice film. Results were compared to thin water layers adsorbed at room temperature.When adsorbed at 298 K, water dissociates forming a thin hydroxyl (OH) layer with small amounts of molecularly adsorbed water but no further reaction (in the sense of oxidation or reduction) is detected. At 77 K, water condenses as ice film. Here, a mainly non-dissociative adsorption of water is observed for layers ∼1 ML while for higher dosages, only molecular water/ice is observed and no significant contribution of OH (in the water layers) is detected. When exposing the sample to UV light while warming it up, the ice layer thaws and desorbs leaving behind a Pu2O3surface. This surprising reduction of PuO2stands in sharp contrast to the radiolytically driven oxidation of spent fuel in presence of water. It is discussed in terms of a photochemically driven interface reaction.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3