Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides

Author:

Lahiri Susanta,Maiti Moumita1

Affiliation:

1. Saha Institute of Nuclear Physics, Chemical Sciences Division, Kolkata, Indien

Abstract

AbstractThe cyclotron produced neutron deficient technetium radionuclides (93Tc,94(m+g)Tc,95Tc,96Tc) have gained renewed interest in various fields, including nuclear imaging, provided they can be obtained in a pure form. Similarly,211At due to its moderate half-life and high intensityα-particle energy (both from211At as well as its transient decay product211Po) is of prime interest in targeted therapy. Another interest is to study the astatine chemistry, which is least studied compared to other halogens due to its non-occurrence in natural systems. For maximum production of these radionuclides various parameters need to be standardized. A chemical separation is required to achieve high radiochemical purity beforein-vivoapplication. This review describes various production routes of neutron deficient astatine and technetium radionuclides that have been reported after the year 2000. The analytical chemistry developed for separation of no-carrier-added (nca) Tc and At radionuclides in the same period is also discussed in detail.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3