Incorporation of pertechnetate and perrhenate into corroded steel surfaces studied by X-ray absorption fine structure spectroscopy

Author:

Heald S. M.,Krupka K. M.1,Brown C. F.2

Affiliation:

1. Pacific Northwest National Laboratory, Radiochemical Processing Laboratory, Richland WA 99352, U.S.A.

2. Pacific Northwest National Laboratory, Richland WA 99352, U.S.A.

Abstract

AbstractBatch reaction experiments and solid-phase characterization analyses were completed to examine the uptake of dissolved perrhenate [Re(VII)] or pertechnetate [Tc(VII)] by A-516 steel coupons that corroded in simulated groundwater solutions or dilute water. The goal was to identify the mechanism(s) that control the uptake of99Tc by corrosion products on carbon steel in the presence of dilute solutions. X-ray absorption fine structure spectroscopy (XAFS) was used to study the oxidation states of Re and Tc incorporated into the corroded steel coupon surfaces. X-ray fluorescence maps showed that the corroded coupons contain localized regions enriched in Re or Tc. The ReL3near edge XAFS results for the coupons reacted with Re-spiked waters were consistent with nearly all of the sorbed Re being present as perrhenate and not significantly reduced to Re(IV). Linear combination fits of the extended XAFS signals for the perrhenate and ReIVO2standards indicate that Re sorbed to the steel coupons corroded in simulated J-13 (a relatively dilute Na-HCO3-CO3groundwater) and even more dilute waters consists of a maximum of 5 and 10% Re(IV), respectively. The fluorescence results also showed that the Re concentrations increased with increasing time of exposure to the X-ray beam, which suggests that the perrhenate ions are only weakly bonded to the matrix of the corrosion product. In contrast to the Re results, the TcKedge XAFS results for the coupons reacted in99Tc-spiked waters indicate that most of the sorbed Tc had been reduced to Tc(IV). The shape of the near edge and extended fine structure is similar to the Tc(IV)-hydrous ferric oxide (HFO) and not the TcO2·nH2O standard. Differences were noted in the XAFS results for steel coupons reacted with waters spiked with 0.001vs.0.1 mmol/L99Tc in that much more of the sorbed Tc from 0.001 mmol/L99Tc experiments was in the form of pertechnetate. Comparison of the XAFS results for coupons reacted with 0.001 mmol/L99Tc-spiked dilute simulated Na-HCO3-CO3groundwatervs.0.001 mmol/L99Tc-spiked dilute water also suggest that there are likely differences in the sorption mechanism for the pertechnetate fraction in the corrosion product which formed in these two test solutions. The cause for these differences is not known, but is likely due to differences in the compositions of the dilute simulated Na-HCO3-CO3groundwater and more dilute waters, such as the dissolved carbonate concentrations.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3