Radiolytic degradation of methoxychlor in methanol and monitoring of radiolytic products by HPLC and GC-MS

Author:

Butt Shahid Bilal,Riaz Muhammad1

Affiliation:

1. Pakistan Institute of Nuclear Science and Technology, Nuclear Chemistry Division, Islamabad, Pakistan

Abstract

Abstract Degradation of priority organic pollutant methoxychlor in methanol solution by gamma irradiation under varied experimental conditions has been optimized. The solution of methoxychlor was air saturated before irradiation. The extent of radiolytic degradation efficiency was monitored by reversed phase HPLC-UV; two major and two minor degradation products were detected. For 5 kGy gamma radiation dose at a rate of 200 kGy h−1≥95% methoxychlor was degraded. The degradation was also monitored by GC-ECD and the degradation products were identified using GC-MS after comparing their mass spectra with the NIST 98 m mass spectral library. It is proposed that major degradation occurs through dechlorination, dehydrochlorination, by the detachment of methoxyphenyl from methoxychlor and by interaction of other radicals generated by the methanol radiolysis. The probable reaction schemes for the formation of products have been proposed. Most of the generated products were methoxy substituted, probably due to the availability of the methoxy radical from methanol radiolysis. The identified radiolytic products of methoxychlor and the removal efficiency have been compared with those of UV photolysis. It is observed that although the source of degradation is somewhat different, the end products or radical generated species are of similar nature.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3