Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutionsviaRaman, visible, and near-infrared spectroscopy

Author:

Bryan S. A.,Levitskaia Tatiana G.1,Johnsen A. M.1,Orton C. R.1,Peterson J. M.1

Affiliation:

1. Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.

Abstract

AbstractThe potential of using optical spectroscopic techniques, such as Raman and visible/near infrared (Vis/NIR), for on-line process control and special nuclear materials accountability applications at a spent nuclear fuel reprocessing facility was evaluated. The availability of on-line, real-time techniques that directly measure process concentrations of nuclear materials will enhance the performance and proliferation resistance of the solvent extraction processes. Further, on-line monitoring of radiochemical streams will also improve reprocessing plant operation and safety. This paper reviews the current state of development of the spectroscopic on-line monitoring techniques for such solutions. To further examine the applicability of optical spectroscopy for this application, segments of a spent nuclear fuel, with approximate burn-up values of 70 MW d/kg M, were dissolved in concentrated nitric acid and adjusted to varying final concentrations of HNO3. The resulting spent fuel solutions were batch-contacted with tributyl phosphate/n-dodecane organic solvent. The feed and equilibrium aqueous and loaded organic solutions were subjected to optical measurements. The obtained spectra showed the presence of quantifiable Raman bands due to NO3and UO22+and Vis/NIR bands due to multiple species of Pu(IV), Pu(VI), Np(V), the Np(V)-U(VI) cation–cation complex, and Nd(III) in fuel solutions. This result justifies spectroscopic techniques as a promising methodology for monitoring spent fuel processing solutions in real-time. The fuel solution was quantitatively evaluated based on spectroscopic measurements and was compared to inductively coupled plasma-mass spectroscopy analysis and Oak Ridge Isotope Generator (ORIGEN)-based estimates.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3