Liquid chromatographic behavior of lanthanides and actinides on monolith supports

Author:

Datta Arpita1,Sivaraman N.2,Srinivasan T. G.,Vasudeva Rao P. R.3

Affiliation:

1. Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Indien

2. Indira Ghandi Centre for Atomic Research, Chemistry Group, Kalpakkam, Indien

3. Indira Gandhi Centre for Atomic Research, Fuel Chemistry Division, Kalpakkam 603102, Indien

Abstract

Abstract Burn-up measurement for the fast reactor fuels in general and measurements on short cooled dissolver solutions in particular pose a great challenge due to the high level of radioactivity associated with the solution. An HPLC technique using monolith support has been developed for the first time for the determination of burn-up of fast reactor fuels and applied to the dissolver solution of the FBTR (Fast Breeder Test Reactor, Kalpakkam, India) fuel discharged at nominal burn-up of 150 GWd/t. A dynamic ion-exchange technique developed for the individual separation of lanthanides as well as actinides in connection with the burn-up measurements, has led to separation of all 14 lanthanides in about 2.77 min, the fastest LC technique as of now in literature and has resulted in a significant reduction in analysis time, radiation dose to operator and liquid waste generation. The dissolver solution was injected directly into the HPLC and assayed for lanthanide fission products, uranium, and plutonium using appropriate dilutions. The atom percent fission was calculated based on these measurements and the results are discussed. A reversed-phase chromatographic technique was also employed for the determination of uranium and plutonium in the dissolver solution. The sorption behaviour of uranium and thorium was examined on a monolith support modified with bis-2-ethylhexyl succinamic acid (BEHSA). Rapid separation of uranium from thorium could be achieved in about 20 s on the modified monolith support.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3