Tunneling and dispersion in 3D phononic crystals

Author:

Page John H.,Yang Suxia,Liu Zhengyou,Cowan Michael L.,Chan Che Ting,Sheng Ping

Abstract

Abstract Tunneling and dispersion of ultrasonic pulses is investigated in 3D phononic crystals consisting of 0.8 mm-diameter tungsten carbide beads that are close packed in a fcc crystal array embedded in either water or epoxy. Pulsed ultrasonic techniques allow us to measure the phase velocity and group velocity, i.e. the dynamics of wave propagation, as well as the transmission coefficient. Our experimental data are well interpreted using multiple scattering theory (MST). In the tungsten carbide/water crystals, dispersion phenomena were studied at frequencies in and around the gap in the ΓL direction. A strong suppression of the group velocity, and large variations of the group velocity dispersion (GVD) were found at frequencies around the band edges. By contrast, fast group velocities and nearly constant GVD with values around zero were observed at gap frequencies, indicating that tunneling in phononic crystals is essentially dispersionless. In the tungsten carbide/epoxy crystals a wide gap (to our knowledge, largest measured 3D band gap) was measured covering a frequency range from 1.2 MHz to 4.3 MHz along the ΓL crystal direction. The agreement between the theory and experiments gives strong evidence of the existence of a large complete gap (1.5 MHz to 3.9 MHz), which is theoretically predicted from the band structure calculations.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3