Pressure effects on the structure of lyotropic lipid mesophases and model biomembrane systems

Author:

Winter Roland,Czeslik C.

Abstract

Lipid systems, which provide valuable model systems for biological membranes, display a variety of polymorphic phases, depending on their molecular structure and environmental conditions. By use of X-ray and neutron diffraction the temperature- and pressure-dependent structure and phase behavior of lipid systems, differing in chain configuration and headgroup structure, have been studied. Besides lamellar phases also nonlamellar phases have been investigated. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lyotropic lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments (e.g., marine biotopes) and because the high pressure phase behavior of biomolecules is of biotechnological interest (e.g., high pressure food processing). We demonstrate that temperature and pressure have noncongruent effects on the structural and phase behavior. By using the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was also investigated. The time constants for completion of the transitions depend on the direction of the transition, the symmetry and topology of the structures involved, and also on the pressure-jump amplitude. In addition, the effect of incorporating ions, steroids and polypeptides into bilayers on the temperature- and pressure-dependent phase behavior of the lipid systems is discussed.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3