Atom order and thermodynamic properties of the ternary Laves phase Ti(TiyNixAl1–x–y)2

Author:

Grytsiv Andriy,Chen Xing-Qiu,Witusiewicz Viktor T.,Rogl Peter,Podloucky Raimund,Pomjakushin Vladimir,Maccio Daniele,Saccone Adriana,Giester Gerald,Sommer Ferdinand

Abstract

Abstract Combined refinement of neutron powder, X-ray single crystal and powder diffraction data allows precise evaluation of symmetry and atom site occupation for the MgZn2-type Laves phase. For compositions Ti(Ni1–x,Alx)2 titanium atoms were found to fully occupy the 4f site, whilst Ni- and Al-atoms randomly share the 2a and 6h sub-lattice sites of space group P63/mmc. At higher Ti-concentrations, Ti-atoms tend to enter the 2a and 6h site. Compositional dependences of the site occupations were used to explain the curved shape of the homogeneity region of the Laves phase. Investigation of the phase relations around the Ti-rich side of the ternary Laves phase was based on LOM, EPMA and X-ray diffraction experiments on argon arc-melted bulk alloys, which were annealed at 1000 °C in vacuum-sealed silica capsules for 100 h. The Ti-rich end of the homogeneity region of the ternary Laves phase at 1000 °C was derived from EMPA to be at Ti0.463Ni0.273Al0.264. Heat of formation data, derived from adiabatic drop calorimetry, were Δ298 H 0 = –57.9 ± 3.5 kJ/mol for Ti0.34Ni0.18Al0.48and –61.6 ± 3.3 kJ/mol for Ti0.36Ni0.24Al0.40. For the ab initio density functional theory applications a large number of structural models were investigated in order to calculate the concentration dependent heats of formation, structural stabilities, lattice parameters, bulk moduli and site occupancies, which are in good agreement with experiment. The theoretical analysis revealed that there are no Ni—Ni nearest neighbours when the concentration of Ni is smaller than that of Al. With increasing Al concentration, Al starts to fill 2a sites, and then continues occupying 6h sites. In compounds with Ti concentration larger than 33.3 at% the 4f sites are fully occupied by Ti, and the excessive Ti prefers 6h sites. The Al concentration of the Al-rich end of the homogeneity region of the ternary Laves phase was predicted to be 57 at%.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Reference2 articles.

1. References : The ternary system Al Ni Ti Isothermal section at degrees C experimental investigation and thermodynamic calculation : The ternary system Al Ni Ti II Thermodynamic assessment and experimental investigation of polythermal phase equilibria;Huneau;Intermetallics,1999

2. Ti Ni Al Laves phase Izv ( in Russian : Rasplavy ( in Russian : Thermodynamics of liquid Al Ni Zr and Al Cu Ni Zr alloys Alloys Comp : Enthalpies of dissolution of elements in liquid tin II Transition alkali and alkaline - earth metals;Gizenko;Metall,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3