Author:
Moore Robert C.,Sanchez Charles,Holt Kathleen,Zhang Pengchu,Xu Huifang,Choppin Gregory R.
Abstract
Summary
90Sr contamination is a major problem at several U.S. sites. At some sites, 90Sr has migrated deep underground making site remediation difficult. In this paper, we describe a novel method for precipitation of hydroxyapatite, a strong sorbent for 90Sr, in soil. The method is based on mixing a solution of calcium citrate and sodium phosphate in soil. As the indigenous soil microorganisms mineralize the citrate, the calcium is released and forms hydroxyapatite. Soil, taken from the Albuquerque desert, was treated with a sodium phosphate solution or a sodium phosphate/calcium citrate solution. TEM and EDS were used to identify hydroxyapatite with CO3
2- substitutions, with a formula of (Ca4.8Na0.2)[(PO4)2.8(CO3)0.2](OH), in the soil treated with the sodium phosphate/calcium citrate solution. Untreated and treated soils were used in batch sorption experiments for Sr uptake. Average Sr uptake was 19.5, 77.0 and 94.7% for the untreated soil, soil treated with sodium phosphate, and soil with apatite, respectively. In desorption experiments, the untreated soil, phosphate treated soil and apatite treated soil released an average of 34.2, 28.8 and 4.8% respectively. The results indicate the potential of forming apatite in soil using soluble reagents for retardation of radionuclide migration.
Subject
Physical and Theoretical Chemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献