Rovibrational Energy Transfer in the 4νCH Manifold of Acetylene, Viewed by IR-UV Double Resonance Spectroscopy. 3. State-to-State J-Resolved Kinetics

Author:

Payne Mark A.,Milce Angela P.,Frost Michael J.,Orr Brian J.

Abstract

Abstract Time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy is used to study the kinetics of collision-induced state-to-state molecular energy transfer between rovibrational states in the 12700-cm−1CH manifold of the electronic ground state of acetylene (C2H2). Particular initial and final rovibrational J-states are prepared and monitored by a pair of tunable laser pulses (IR PUMP and UV PROBE) and the kinetic results recorded by continuously varying the time delay between those pulses at a set sample pressure. After allowing for collision-induced quenching of fluorescence and mass transfer from the IR-UV optical excitation zone (by beam flyout and diffusion), an array of kinetic data for J-resolved energy-transfer channels can be interpreted by means of a mechanistically structured master-equation model. This paper focuses on kinetics derived by probing C2H2 in its 4νCH J = 12 state (which is affected by intramolecular perturbations and implicated in unusual collision-induced quasi-continuous background effects) and J-resolved collision-induced rovibrational energy transfer with both even ΔJ and (supposedly forbidden) odd ΔJ.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3