Classical Trajectory and Statistical Adiabatic Channel Study of the Dynamics of Capture and Unimolecular Bond Fission. VII. Thermal Capture and Specific Rate Constants k(E,J) for the Dissociation of Molecular Ions

Author:

Troe J.,Ushakov V.G.,Viggiano A. A.

Abstract

Abstract Specific rate constants, k(E,J), and thermal capture rate constants, k cap(T), are determined by statistical adiabatic channel model/classical trajectory (SACM/CT) calculations for unimolecular dissociation and the reverse association reactions of representative polyatomic molecular ions. Simple short-range valence/long-range ion-induced dipole model potentials without reverse barriers have been employed, using the reactions C8H10 + ⇔ C7H7 + + CH3 and C9H12 + ⇔ C7H7 + + C2H5 as illustrative examples. Simplified representations of k(E) and k cap(T) from rigid activated complex Rice–Ramsperger–Kassel–Marcus (RRKM) theory are compared with the SACM/CT treatment and with experimental results. The Massey parameters of the transitional mode dynamics, for the systems considered, are smaller than unity such that their dynamics is nonadiabatic while the dynamics of the conserved modes is adiabatic. Because of the long-range/short-range switching character of the potential, simple rigid activated complex RRKM theory cannot be used without modifications. The effects of a shifting of the effective bottle-neck of the dynamics with increasing energy towards smaller interfragment distances in the present cases are amplified by a shift into a range of increasing anisotropy of the potential. As a consequence, the thermal capture rate constants markedly decrease with increasing temperature.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3