IR Spectroscopy of Microsolvated Aromatic Cluster Ions: Ionization-Induced Switch in Aromatic Molecule–Solvent Recognition

Author:

Dopfer Otto

Abstract

Abstract IR spectroscopy, mass spectrometry, and quantum chemical calculations are employed to characterize the intermolecular interaction of a variety of aromatic cations (A+) with several types of solvents. For this purpose, isolated ionic complexes of the type A+–L n , in which A+ is microsolvated by a controlled number (n) of ligands (L), are prepared in a supersonic plasma expansion, and their spectra are obtained by IR photodissociation (IRPD) spectroscopy in a tandem mass spectrometer. Two prototypes of aromatic ion–solvent recognition are considered: (i) microsolvation of acidic aromatic cations in a nonpolar hydrophobic solvent and (ii) microsolvation of bare aromatic hydrocarbon cations in a polar hydrophilic solvent. The analysis of the IRPD spectra of A+–L dimers provides detailed information about the intermolecular interaction between the aromatic ion and the neutral solvent, such as ion–ligand binding energies, the competition between different intermolecular binding motifs (H-bonds, π-bonds, charge–dipole bonds), and its dependence on chemical properties of both the A+ cation and the solvent type L. IRPD spectra of larger A+–L n clusters yield detailed insight into the cluster growth process, including the formation of structural isomers, the competition between ion–solvent and solvent–solvent interactions, and the degree of (non)cooperativity of the intermolecular interactions as a function of solvent type and degree of solvation. The systematic A+–L n cluster studies are shown to reveal valuable new information about fundamental chemical properties of the bare A+ cation, such as proton affinity, acidity, and reactivity. Because of the additional attraction arising from the excess charge, the interaction in the A+–L n cation clusters differs largely from that in the corresponding neutral A–L n clusters with respect to both the interaction strength and the most stable structure, implying in most cases an ionization-induced switch in the preferred aromatic molecule–solvent recognition motif. This process causes severe limitations for the spectroscopic characterization of ion–ligand complexes using popular photoionization techniques, due to the restrictions imposed by the Franck–Condon principle. The present study circumvents these limitations by employing an electron impact cluster ion source for A+–L n generation, which generates predominantly the most stable isomer of a given cluster ion independent of its geometry.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3