Elastic stiffness coefficients of thenardite and their pressure and temperature dependence

Author:

Arbeck Dirk,Haussühl Eiken,Vinograd Victor L.,Winkler Björn,Paulsen N.,Haussühl Siegfried,Milman Victor,Gale Julian D.

Abstract

AbstractThe elastic stiffness coefficients,cij, of orthorhombic Na2SO4thenardite (space group Fddd) were measäured with an ultrasonic plane wave technique at ambient temperature as a function of hydrostatic pressure in the range of 0.1–70 MPa. The variation of thecijin the range of 1–5000 MPa was studied with density functional theory (DFT) based calculations. The experimental results and the DFT calculations were used to derive a force-field model, which was then employed to compute lattice parameters and elastic stiffness tensors of thenardite and of two other Na2SO4polymorphs as functions of the temperature based on quasi-harmonic lattice dynamics. The structural parameters of the three polymorphs measured at high temperatures are reproduced to within 1.7% by the present calculations. Phases II (space groupPbnm) and III (Cmcm) appear to have significantly higher entropies than thenardite in agreement with their metastable formation at higher temperatures.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3