High temperature elastic properties of Mg-cordierite: experimental studies and atomistic simulations

Author:

Haussühl Eiken,Vinograd Victor L.1,Krenzel Thomas F.2,Schreuer Jürgen3,Wilson Dan J.1,Ottinger Jan1

Affiliation:

1. Goethe Universtät Frankfurt, Institut für Geowissenschaften, Frankfurt, Deutschland

2. Goethe Universtät Frankfurt, Institut für Geowissenschaften, Frankfurt

3. Ruhr-Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Bochum, Deutschland

Abstract

Abstract The temperature dependence of the elastic stiffness coefficients of natural orthorhombic Mg-cordierite was studied between 295 K and 1573 K using resonant ultrasound spectroscopy. The measurements revealed a continuous decrease of all the elastic constants with increasing temperature. The bulk modulus softens from about 129(2) GPa at 295 K to 110(2) GPa at 1473 K. Irreversible anomalies in the temperature evolution of the resonance frequencies of certain eigenmodes were observed above 920 K due to the escape of volatiles and the occurrence of microcracks. However, the dehydrated samples still showed integrity on the macroscopic scale. Therefore, despite the occurence of the micro-cracks, a reasonable quantitative analysis of the high-temperature RUS data of cordierite samples was still feasible. The thermal expansion was studied between 100 K and 1570 K using dilatometry. The new data are consistent with earlier experimental results and confirm the expansion of the a and b unit cell parameters and the contraction of the c parameter with increasing temperature. Posäsible contributions of the Al/Si disorder to the elastic properties of Mg-cordierite were estimated on the basis of force-field and quantum mechanical calculations. The behaviour of individual elastic stiffness coefficients was followed across the order/disorder transition by Monte Carlo simulations. The simulations predicted a decrease in the bulk modulus with increasing Al/Si disorder. However, this effect is much smaller than that observed experimentally. The measured decrease in the elastic stiffness coefficients is mainly due to phonon softening effects.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3