Probing Small Protonated Water Clusters in Acetonitrile Solutions by 1H NMR

Author:

Sigalov Mark V.1,Kalish Noah1,Carmeli Benny1,Pines Dina1,Pines Ehud

Affiliation:

1. Ben-Gurion University of the Negev, Department of Chemistry, Beer-Sheva 84125, Israel

Abstract

Abstract In a previous publication by Kalish et al. (J. Phys. Chem. A 115 (2011) 4063) the existence of well defined small protonated water clusters in acetonitrile has been established by IR spectroscopy. Here we report on a 1H NMR study of triflic acid, CF3SO3H, in acetonitrile-water solutions. Using NMR we are able to corroborate the general solvation scheme we have proposed for the hydrated proton in acetonitrile as a function of the molar ratio between the strong mineral acid and water, n = [H2O]/[acid]. According to this scheme, backed now by both IR absorption spectroscopy and NMR measurements, the very strong triflic acid completely dissociates in acetonitrile/water solutions to yield the aqueous proton and the triflate anion when n > 1. Furthermore, increasing n results in the proton solvated in increasingly larger water clusters formed within the acetonitrile solution. Clearly distinguishable by NMR are the smallest protonated water clusters, the protonated water monomer, H3 +O, and the protonated water dimer, H5 +O2, which dominate the solution for n = 1,2,3. For larger n the NMR study indicates the gradual increase of the average protonated water cluster size as a function of n while the proton inner solvation core more closely retaining the characteristics of a deformed protonated water dimer, (H2O-H+⋯OH2) s than that of the protonated water monomer (H3 +O) s .

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3