Coke Formation in Steam Reforming of Natural Gas over Rhodium/Alumina Catalysts: An Atomic Force Microscopy Study using the Oscillating Friction Mode

Author:

Eßmann Claudia1,Weis Frederik2,Seipenbusch Martin2,Schimmel Thomas3,Deutschmann Olaf

Affiliation:

1. Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chem, Karlsruhe, Deutschland

2. Karlsruhe Institute of Technology, Institute of Mechanical Process Engineering and Me, Karlsruhe, Deutschland

3. Karlsruhe Institute of Technology, Institute of Applied Physics, Karlsruhe, Deutschland

Abstract

Abstract The initial stage of coke formation in steam reforming of natural gas over rhodium/alumina catalysts was studied microscopically. A well-defined model catalyst prepared by an aerosol technique was placed in a flow reactor to very mildly coke the catalyst sample. Therefore, a natural gas–steam mixture at steam-to-carbon ratios of unity was fed to the reactor operated for thirty minutes at atmospheric pressure and moderate temperatures of 650 ºC. Fresh and used catalyst samples were characterized by SEM-EDX and a recently developed AFM technique, the Oscillating Friction Microscopy (OFM), to analyze the friction characteristics of the sample. OFM combined with SEM-EDX allowed to distinguish between coke depositions, alumina support (Al2O3), and Rh particles and to locate the initial carbon deposition in the process. It was found that coke formation starts on the catalyst particle. The carbonaceous overlayer can be removed from the catalyst and the closely surrounding support by multiples scans with the AFM tip.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3