Relaxation Dynamics of Electronically Excited C60 − in o-Dichlorobenzene and Tetrahydrofuran Solution

Author:

Brands Helge1,Ehrler Oli T.2,Kappes Manfred3,Unterreiner Andreas-Neil4

Affiliation:

1. Paul Scherrer Institute, WBGB/013, Villigen PSI, Schweiz

2. Carl Zeiss SMT GmbH, Laser Optics GmbH, Oberkochen, Deutschland

3. Karlsruhe Institute of Technology, Institute for Physical Chemistry, Karlsruhe, Deutschland

4. Karlsruher Institut für Technologie, Institut für Physikalische Chemie, Karlsruhe, Deutschland

Abstract

Abstract The ultrafast response of singly negatively charged C60 fullerene in solution has been investigated by femtosecond pump-probe absorption spectroscopy and transient anisotropy in the visible and near-infrared region. Pump excitation within the near-infrared band demonstrates that this spectral feature can be described as a vibrational progression associated with a single electronic transition. Relaxation of the first electronically excited state occurs primarily by internal conversion with a time constant of 3 ps, slightly depending on the solvents, tetrahydrofuran or o-dichlorobenzene, and also on the excitation wavelength. An excitation of the second electronically excited state around 530 nm leads to an ultrafast internal conversion to the first excited state with a pulse-limited time constant of less than 100 fs. As a minor channel, stimulated emission in the spectral regime of 1150–1300 nm was observed from the first electronically excited state both after near-infrared and visible excitation. After internal conversion to the electronic ground state, C60 dissipates its excess internal energy into the solvent on a longer timescale of 40–70 ps. The transient anisotropy associated with directly populating the first excited state reveals an ultrafast component decaying within 100 fs, which is attributed to ultrafast vibrational motions, conceivably arising from excited state pseudorotation.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3