Pitting Corrosion of Zinc in Na2S2O3 Solutions. Part I. Polarization Studies and Morphology of Pitting

Author:

Abd El-Rehim Sayed S.1,Hamed Eman2,Shaltot A. M.2,Amin Mohammed A.3

Affiliation:

1. Ain Shams University,, Chemistry Department, Faculty of Science, Cairo, Ägypten

2. Ain Shams University, Faculty of Science, Chemistry Department, 11566 Abbassia, Cairo, Ägypten

3. Ain Shams University, Chemistry Department, Faculty of Science, 11566 Abbassia, Cairo, Ägypten

Abstract

Abstract As a first step towards studying pitting corrosion of Zn in aerated neutral 1.0 M sodium thiosulphate solution (pH 6.6), we have reported the results of cyclic polarization measurements on the passivity and passivity breakdown of Zn in this solution. The recorded voltammograms involved two oxidation processes labeled as AI and AII, and two reduction processes labeled as CII and CI on the forward (anodic) and reverse (cathodic) scans, respectively. The cathodic peak CII was attributed to the reduction of the pitting corrosion products (process AII). On the other hand, the cathodic process CI was related to the reduction of Zn2+ species formed during the course of the forward scan (process AI and the subsequent formation of the passive region), and the reduction of the adsorbed S2O3 2− anions to S2− and SO3 2−. The reduction products of S2O3 2−, namely S2− and SO3 2− anions, were detected in solution as a function of starting potential and time of holding the electrode at a cathodic potential of −2.0 V (Ag/AgCl). These anions were found to cooperate with the aggressive S2O3 2− anion itself in passivity breakdown and initiation of pitting corrosion. The effect of solution temperature (15–70 ºC) on the cyclic polarization behaviour of Zn was also studied, and metastable and stable pitting events observed at high temperatures were discussed. The morphology of pitting was also studied by ex situ scanning electron microscopy (SEM) as a function of applied anodic potential, bulk concentration of S2O3 2− and solution temperature. Cross-sectional view of pits revealed the formation of irregular deep and shallow pits. The aspect ratios (the ratio of pit width to pit depth) of the growing pits were estimated as a function of potential, electrolyte concentration and solution temperature. The aspect ratio of the growing pits was found to be potential and concentration independent, while it increased with temperature.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference2 articles.

1. Proceedings of the Fourth Interna tional on Passivity The;Augustynski;Symposium Society,1978

2. Pitting of Zinc in Na Solutions;Hukovic;Appl Electrochem Corrosion Acta,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3