Optimization of Algorithms for Modeling Protein Structural Transitions from Sparse Long-Range Spin-Label Distance Constraints

Author:

Jeschke Gunnar

Abstract

Abstract Function-related structural transitions of proteins are often large-scale conformational changes that are related to essential dynamics of a protein, which in turn proceeds along a small number of slow normal modes. Hence, it should be possible to characterize such transitions by an equally small number of distance constraints. These constraints should contain the information how the backbone coordinates move along the active normal modes. Such an approach based on residue-level elastic network models for the protein backbone is optimized with respect to the fit algorithm, constraint selection, and parametrization of the elastic network model. A stable fitting algorithm can be based on energy equipartitioning among the modes in the active space. This stabilization allows for extending active space dimension beyond the number of available constraints, which improves fit quality for transitions with a normal mode spectrum of only slowly increasing frequencies. In constraint selection, discrimination between the active normal modes appears to be more important than achieving large distance changes between initial and final structure. Parametrization of the network model has only a small influence on fit quality, as long as scaling of force constants with the inverse sixth power of the distance between network nodes is maintained. Elastic network models with a uniform force constant below a cutoff distance perform significantly worse. With 50 distance constraints, the optimized approach covers more than 50% of the structural change for 44% of all test cases, between 25 and 50% for 22% of the cases, and it fails for 33%.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3