HSP-Mediated Cytoprotection of Mesothelial Cells in Experimental Acute Peritoneal Dialysis

Author:

Bender Thorsten O.12,Böhm Michael1,Kratochwill Klaus1,Lederhuber Hans1,Endemann Michaela1,Bidmon Bettina1,Aufricht Christoph1

Affiliation:

1. Department of Pediatrics, Medical University, Vienna, Austria

2. Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany

Abstract

♦ Background Low biocompatibility of peritoneal dialysis solution (PDS) injures mesothelial cells but also induces heat shock proteins (HSP), the main effectors of the cellular stress response. This study investigated whether overexpression of HSP upon pharmacologic induction results in cytoprotection of mesothelial cells in experimental PD. ♦ Methods Stress response of mesothelial cells upon exposure to PDS was pharmacologically manipulated using glutamine as a co-inducer. In vitro, HSP-mediated cytoprotection was assessed by simultaneous measurements of HSP expression using Western blot analysis and viability testing using release of lactic dehydrogenase in cultured human mesothelial cells. In vivo, detachment of mesothelial cells from their peritoneal monolayer was assessed following exposure to PDS with and without the addition of glutamine in the acute rat model of PD. ♦ Results In vitro, mesothelial cell viability following exposure to PDS was significantly improved upon pharmacologic co-induction of HSP expression by glutamine (226% ± 29% vs 190% ± 19%, p = 0.001). In vivo, mesothelial cell detachment during exposure to PDS was reduced upon pharmacologic induction of HSP expression by glutamine (93 ± 39 vs 38 ± 38 cells, p = 0.044), resulting in reduced peritoneal protein loss (75 ± 7 vs 65 ± 4 mg, p = 0.045). ♦ Conclusion Our results represent the first study of pharmacologic manipulation of HSP expression for cytoprotection of mesothelial cells following acute in vitro and in vivo exposure to PDS. PDS with added glutamine might represent a promising therapeutic approach against low biocompatibility of PDS but needs validation in a chronic PD model.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3