Digital Gene Expression Analysis Might Aid in the Diagnosis of Thyroid Cancer

Author:

Armanious H.,Adam B.,Meunier D.,Formenti K.,Izevbaye I.

Abstract

Background: Thyroid cancer represents approximately 90% of endocrine cancers. Difficulties in diagnosis and low inter-observer agreement are sometimes encountered, especially in the distinction between the follicular variant of papillary thyroid carcinoma (fvptc) and other follicular-patterned lesions, and can present significant challenges. In the present proof-of-concept study, we report a gene-expression assay using NanoString nCounter technology (NanoString Technologies, Seattle, WA, U.S.A.) that might aid in the differential diagnosis of thyroid neoplasms based on gene-expression signatures. Methods: Our cohort included 29 patients with classical papillary thyroid carcinoma (ptc), 13 patients with fvptc, 14 patients with follicular thyroid carcinoma (ftc), 14 patients with follicular adenoma (fa), and 14 patients without any abnormality. We developed a 3-step classifier that shows good correlation with the pathologic diagnosis of various thyroid neoplasms. Step 1 differentiates normal from abnormal thyroid tissue; step 2 differentiates benign from malignant lesions; and step 3 differentiates the common malignant entities ptc, ftc, and fvptc. Results: Using our 3-step classifier approach based on selected genes, we developed an algorithm that attempts to differentiate thyroid lesions with varying levels of sensitivity and specificity. Three genes—namely SDC4, PLCD3, and NECTIN4/PVRL4—were the most informative in distinguishing normal from abnormal tissue with a sensitivity and a specificity of 100%. One gene, SDC4, was important for differentiating benign from malignant lesions with a sensitivity of 89% and a specificity of 92%. Various combinations of genes were required to classify specific thyroid neoplasms. Conclusions: This preliminary proof-of-concept study suggests a role for nCounter technology, a digital gene expression analysis technique, as an adjunct assay for the molecular diagnosis of thyroid neoplasms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3