Permeability of Peritoneal and Glomerular Capillaries: What are the Differences According to Pore Theory?

Author:

Rippe Bengt1,Davies Simon2

Affiliation:

1. Department of Nephrology, Lund University, Sweden Stoke-on-Trent, Staffordshire, U.K.

2. Department of Nephrology, University Hospital of North Staffordshire, Stoke-on-Trent, Staffordshire, U.K.

Abstract

Pore and fiber-matrix theory can both be used to model the peritoneal and glomerular filtration barriers in an attempt to shed light on their differing structure–function relationships. The glomerular filtration barrier (GFB) is structurally more specialized, morphologically complex, and also highly dynamic; but paradoxically, because of its uniformity, it conforms more closely to the predictions of pore theory than does the peritoneum, and it in fact resembles a more simple synthetic membrane. Compared with the peritoneal capillary wall, the GFB has no transcellular “third” pores (aquaporins), and it is far less leaky and more size-selective to proteins, mainly as a result of having far fewer “large” pores. It does have charge-selective properties, although these are considered much less important in excluding albumin than was once thought, and it is also able to select polymers according to their shape and flexibility. Even this property might reflect the relative uniformity of the GFB, which has a high diffusion area and short diffusion distances, compared with the peritoneal barrier, which behaves more like a gel filtration column. Furthermore, the length of the diffusion path across the peritoneal membrane is much greater for small solutes, given the relatively high ultrafiltration coefficient for that membrane compared with the GFB—a situation that reflects both the tortuosity of the interendothelial clefts and the distribution of peritoneal capillaries within the interstitium. These comparisons reveal the peritoneal barrier as a relatively complex structure to model; and yet this model may be more representative of the general microcirculation, and thus shed light on systemic endothelial function in renal failure.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3