DEFORMATION INTERACTION OF STRONG EARTHQUAKES OF 2010–2016 IN THE ZONE OF INFLUENCE OF THE HIKURANGA SUPERPLUME (NEW ZEALAND) ACCORDING TO GPS OBSERVATIONS

Author:

Kaftan V. I.1,Dokukin P. A.2,Manevich A. I.1,Tatarinov V. N.3,Shevchuk R. V.3

Affiliation:

1. Geophysical Center of the Russian Academy of Sciences

2. Peoples' Friendship University of Russia named after Patrice Lumumba

3. Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Abstract

Between 2010 and 2016, a series of 11 strong M>6 earthquakes occurred in New Zealand. In the area covering the epicentral zones of these seismic events, the spatiotemporal characteristics of movements and deformations of the Earth’s crust were obtained based on the processing of continuous satellite GPS observations at 64 points of the geodetic network. Using these data, we have studied the evolution of horizontal movements and deformations in order to reveal the possible relationship between the observed deformational and seismic processes. Analysis has been made on the total shear deformation, since the main tectonic structures of the region are faults with a shear mechanism of displacement of their sides. The presence of a giant mantle superplume in the area was the reason for the study of the behavior of horizontal dilatation deformation, and horizontal and vertical crustal motions. Based on the obtained digital deformation models, there were created kinematic visualizations, which are synoptic animations providing direct observations of the seismic deformation process and their heuristic analysis. The study revealed that a series of the strongest earthquakes may be interconnected by a long-term single deformation process, which is caused by the occurrence of an anomalous total shear deformation. The general maximum of shear deformation, dilatation deformation, and horizontal and vertical displacements are concentrated in the center of mantle superplume activity. Prior to strong seismic events, there occur zones of deficit (minimum) displacements of the Earth’s crust in the area of future epicenters, which is of research interest in terms of predicting their locations.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3