MINERALOGY AND ZIRCON AGE OF CARBONATITES OF THE SREDNYAYA ZIMA COMPLEX (EASTERN SAYAN)
-
Published:2024-04-19
Issue:2
Volume:15
Page:0749
-
ISSN:2078-502X
-
Container-title:Geodynamics & Tectonophysics
-
language:
-
Short-container-title:Geodin. tektonofiz.
Author:
Prokopyev I. R.1, Doroshkevich A. G.2, Varchenko M. D.1, Semenova D. V.3, Izbrodin I. A.3, Kruk M. N.3
Affiliation:
1. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences ; Novosibirsk State University 2. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences ;Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences 3. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Abstract
The Srednyaya Zima alkaline-ultramafic carbonatite complex is located in the Eastern Sayan and is a part of the area of manifestation of Neoproterozoic rare-metal alkaline-carbonatite magmatism along the southern and southeastern margins of the Siberian craton. Mineralogical studies of calciocarbonatites of the Srednyaya Zima complex have shown the presence of primary magmatic mineral phases of calcite, biotite (annite-phlogopite), ilmenite, and fluorapatite. Pyrochlore, zircon, burbankite, magnetite, rutile, titanite, strontianite, and barite were identified of the accessory minerals. The chemical composition of the magmatic minerals of the Srednyaya Zima carbonatites is similar to the mineral composition of the closely aged carbonatite complexes Belaya Zima and Arbarastakh. The rare-element and structural analysis of zircon from carbonatites showed the presence of two zones – a magmatic core and areas of recrystallization. U-Pb dating of igneous zircon showed the age interval of its crystallization – 637±4 Ma, which coincides with the geochronology of the formation of alkali-ultramafic rare-metal complexes along the southern margin of the Siberian craton. The formation of Neoproterozoic alkaline-carbonatite complexes is associated with tectonic events of the breakup of the Rodinia supercontinent.
Publisher
Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences
Reference63 articles.
1. Abersteiner A., Kamenetsky V.S., Goemann K., Kjarsgaard B.A., Fedortchouk Y., Ehrig K., Kamenetsky M., 2020. Evolution of Kimberlite Magmas in the Crust: A Case Study of Groundmass and Mineral-Hosted Inclusions in the Mark Kimberlite (Lac de Gras, Canada). Lithos, 372–373, 105690. https://doi.org/10.1016/j.lithos.2020.105690. 2. Atencio D., Andrade M.B., Christy A.G., Gieré R., Kartashov P.M., 2010. The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist 48 (3), 673–698. https://doi.org/10.3749/canmin.48.3.673. 3. Bagdasarov Yu.A., Gusev G.S., Gushchin A.V., Mezhelovsky N.V., Morozov A.F., 2001. Metallogeny of Magmatic Complexes of Intraplate Geodynamic Settings. GEOS, Moscow, 640 p. (in Russian) [Bagdasarov Yu.A., Gusev G.S., Gushchin A.V., Mezhelovskii N.V., Morozov A.F. Metallogeniya magmaticheskikh kompleksov vnutriplitovykh geodinamicheskikh obstanovok. M.: GEOS, 2001. 640 s.]. 4. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C., 2004. Improved 206Pb/218U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003. 5. Brod J.A., Gaspar J.C., Araujo D.P., Gibson S.A., Thompson R.N., Junqueira-Brod T.C., 2001. Phlogopite and Tetra-Ferriphlogopite from Brazilian Carbonatite Complexes: Petrogenetic Constraints and Implications for Mineral-Chemistry Systematics. Journal of Asian Earth Sciences 19 (3), 265–296.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|