INFLUENCE OF ORIENTATION ERRORS ASSOCIATED WITH THE USE OF A MAGNETIC COMPASS ON THE ACCURACY OF DETERMINING THE POSITION OF THE PALEOMAGNETIC POLE AND THE AMPLITUDE OF PALEOSECULAR VARIATIONS

Author:

Ushakov D. A.1,Lebedev I. E.1,Pavlov V. E.1

Affiliation:

1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Abstract

The use of a magnetic compass in paleomagnetic studies of highly magnetic rocks (for instance, basalts) can lead to large errors in the orientation of paleomagnetic samples. On the other hand, alternative methods of orientation are relatively time-consuming, and in the case of using a solar compass, they also require sunny weather – a condition that is rarely met, especially when sampling at high and subpolar latitudes. This often leads to the fact that researchers in their work rely on the results of magnetic compass measurements, while assuming that the resulting errors are of a random nature and, with sufficiently good statistics, are averaged. In this study, numerical modeling is performed, which allows us to verify this assumption and assess how much orientation errors associated with the use of a magnetic compass can affect the final results of paleomagnetic studies, such as determining the position of the paleomagnetic pole and the amplitude of ancient geomagnetic variations. As a result of the work performed , it is shown that: 1) the amplitudes of paleosecular variations and the positions of paleomagnetic poles are weakly sensitive to moderate and even relatively large errors in the orientation of paleomagnetic samples associated with the use of a magnetic compass; 2) very large errors in the orientation of samples lead to a significant increase in the within-site scatter of paleomagnetic directions, which makes it possible to detect and exclude the corresponding sites with a large (for instance >15°) value of the α95; 3) the influence of distortions associated with the use of a magnetic compass on the accuracy of determining the position of the paleomagnetic pole and the amplitude of ancient geomagnetic variations depends on latitude. At near-equatorial latitudes, this effect is maximal, at medium latitudes – minimal.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3