Physical modeling experiments to study periodic activation of faults in seismic zones

Author:

Bornyakov S. A.1ORCID,Panteleev I. A.2ORCID,Cheremnykh A. V.3ORCID,Karimova A. A.1

Affiliation:

1. Institute of the Earth's Crust, Siberian Branch of RAS; Irkutsk State University

2. Institute of Continuous Media Mechanics, Ural Branch of RAS

3. Institute of the Earth's Crust, Siberian Branch of RAS

Abstract

Our study aimed to find a mechanism that controls preparation and subsequent full seismic activation of large faults that may act as sources of strong earthquakes. A large fault was physically modeled to investigate the dynamics of its deformation. The experiments were conducted on elastoviscoplastic and elastic models of the lithosphere. A digital camera was used to capture images in the course of the modeling experiments. The digital image correlation method (DIC) detected the moments of impulse activation and displacements along the entire fault or its major segment. Between the activation moments, the fault structure consists of segments, including active ones. Activation is directional and involves a few large segments of the fault, then numerous small ruptures, and the latter are gradually degenerating. The long-term deformation dynamics of the fault is represented by a regular sequence of its full activations. In most cases, each moment of activation correlates with a minimum dip angle of the repeatability curve (β) and a maximum value of information entropy (Si). We analysed in detail the deformation dynamics of the fault and in its wings between two full activation that occurred in a regular pattern, including the phases of regression and progression of the deformation process. The analysis revealed two similar scenarios in the evolution of the active segments and plastic micro slip faults within the active segments. In some intervals of time, deformation takes place considerably differently on the segments and the plastic micro slip faults. Such differences suggest that in the studies attempting to statistically predict and assess a large and potentially seismically hazardous fault zone, this zone should be considered spatially subdivided into a central narrow subzone (including the main fault plane) and two wide subzones framing the fault wings. According to our physical modeling results, the central subzone can be up to10 km wide, and the total width of all the subzones can amount to100 km or more. This study contributes to the development of the concepts of geodynamics of large faults in the seismic zones of the lithosphere and investigates one of the possible mechanisms preparing strong earthquakes in the seismic zones.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3