Tectonic depressions on the East-European and Siberian platforms: numerical modeling of convection beneath the Eurasian continent

Author:

Chervov V. V.1ORCID,Bushenkova N. A.2ORCID,Chernykh G. G.3ORCID

Affiliation:

1. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences

2. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

3. Federal Research Center for Information and Computational Technologies; Novosibirsk State University

Abstract

In modern concepts, the upper mantle of the Earth is a highly viscous incompressible liquid, and its flow is described using the Navier – Stokes equations in the Oberbeck – Boussinesq and geodynamic approximations. Convective flows in the upper mantle play a decisive role in the kinematics of lithospheric plates and the geological history of continental regions. Mathematical modeling is a basic method for studying convective processes in the mantle. Our paper presents a numerical model of convection, which is based on the implicit artificial compressibility method. This model is tested in detail by comparing our calculation results with the results of a well-known international test. It is demonstrated that the Fedorenko grids sequence method is highly efficient and reduces the computing time almost by a factor of eight. The numerical model is generalized in order to state the problem in a spherical system of coordinates. It is used to analyse the distribution of convective flows in the upper mantle underneath the Eurasian continent. The analysis shows that the thickness and geometrical parameters of the lithospheric blocks are the factors of significant influence on the distribution of convective flows in the upper mantle. The resulting structure of convective flows is manifested in the surface topography of large platform areas wherein the lithosphere thickness is increased. Thus, the locations of extended downward convection flows under the East European and Siberian platforms are clearly comparable to syneclises observed in the study area.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3